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Abstract

We present a general procedure based on the pseudo-differential calculus for deriving artificial boundary conditions

for an eigenvalue problem that characterizes the propagation of guided modes in optical waveguides. This new ap-

proach allows the construction of local conditions that (a) are independent of the frequency regime, (b) preserve the

sparsity pattern of the finite element discretization, and (c) are applicable to arbitrarily shaped convex artificial

boundaries. The last feature has the potential for reducing the size of the computational domain. Numerical results are

presented to highlight the potential of conditions of order 1/2 and 1, for improving significantly the computational

efficiency of finite element methods for the solution of optical waveguide problems.
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1. Introduction

The problem of the propagation of guided modes in optical fibres can be formulated, under the weak

guidance assumptions, as an eigenvalue scalar problem set in the whole plane R2 [6,18,20,25,30]. Therefore,

discretizing this eigenvalue problem by the finite element method requires first defining a bounded com-

putational domain. This is typically achieved by surrounding the core of the considered fibre by an artificial
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exterior boundary positioned at some distance from the interface core–cladding. This distance is usually

measured in multiples of the wavelength of interest. The behavior of the guided field is then represented by

a boundary condition specified on the artificial boundary. The idea here is (a) to ‘‘prohibit’’ the reflection of
waves from the artificial boundary to avoid spurious solutions, and (b) to define an effective computational

domain, the region that is inside the artificial boundary, that is as ‘‘small’’ as possible to be cost-effective.

Many attempts have been made so far to achieve this important objective with however limited success

(see [7,16,32] among others). For an overview about the performance of such approaches, one may see the

introduction in [11] and also [13,14,29]. Most recently, the last two authors and their co-workers suggested

a new artificial boundary condition of Robin-type that couples the propagation constants to their corre-

sponding fields [11]. The resulting formulation of the optical waveguide problem in a finite domain allowed

the computation of dispersion curves with an excellent level of accuracy according to the numerical results
reported in [11]. The main drawback of this new formulation is that the proposed boundary condition

requires that the artificial boundary to be circular. This restriction on the geometry of the artificial

boundary often leads to a larger than needed computational domain, which hampers computational

efficiency.

Our objective in this paper is to generalize the boundary condition suggested in [11] by constructing local

artificial boundary conditions that can operate on arbitrarily shaped artificial boundaries (and then cir-

cumscribe more closely the interface core–cladding of the considered fibre) and to assess their computa-

tional efficiency. The procedure we propose here for deriving such boundary conditions is based on the
approximation of the Dirichlet to Neumann operator (DtN ) by using the pseudo-differential calculus (see

Section 4.1). A similar technique has been suggested in [2], in the case of Helmholtz equation, to extend the

second order Bayliss–Gunzburger–Turkel boundary condition [4] in order to accommodate boundaries of

arbitrary shape. However, the technique proposed in [2] is based on a high frequency regime assumption at

the so-called localization step (see Section 4.1.2), and therefore cannot be applied to the considered ei-

genvalue problem since it requires that the propagation constants (the eigenvalues) must be very large. Such

assumption is not valid for optical waveguide problems because, in practice, the propagation constants may

be very small. Our approach does not require such restriction at the localization step and therefore its
domain of validation is independent of the frequency band. We point out that, while in principle the

proposed procedure can derive boundary conditions of any order in the sense of Definition 1 (see Section

4.1.2), the conditions of practical interest, from both mathematical and numerical point of view, are in fact

of order 1/2 and 1 only (see Section 3). Indeed, from the mathematical point of view, the spectral analysis of

the resulting eigenvalue problem, set in the bounded domain delimited by the artificial boundary, can be

performed by applying the classical self-adjoint operators theory [22]. We have accomplished such analysis

in Section 4.2 and have showed that the corresponding solutions have the same properties as the solutions

of the original problem (the eigenvalue problem set in R2). From the numerical point of view, these two
conditions are (a) easy to implement in any finite element code since they requires only additional mass-like

matrices on the artificial boundary (see Section 5.1), and (b) more versatile than the boundary condition

suggested in [11] because they are applicable to any convex geometry of the artificial boundary. Conse-

quently, for non-circular-shaped cores, it is expected that these conditions allow smaller computational

domains and then, lead to better computational efficiencies. We present in Section 5.2 several numerical

results to highlight their potential for reducing the size of the computational domain while maintaining the

level of accuracy reached by the condition suggested in [11].
2. Preliminaries

First, we describe the class of optical waveguides we focus on throughout this paper. Then, we recall the

mathematical formulation that characterizes the propagation of guided modes of such structures.
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2.1. Physical model

We recall that an optical fibre is a cylindrical dielectric structure assumed to be infinitely extended along
its axis denoted by Ox3 that is called the propagation�s axis (Fig. 1). In the transverse direction x1 and x2, an
optical fibre is constituted of two regions: a core and a cladding (Fig. 1). The open bounded subset X of R2

represents the fibre�s core. The cladding, denoted by Xe, is the domain that surrounds X and is assumed to

be infinite, i.e., Xe ¼ R2 n X. This is a classical assumption since the guided modes� fields decrease expo-

nentially to zero out of the core of the fibre and the size of the cladding is typically hundred times larger

than the size of the core [18,20]. Furthermore, these regions are completely determined once we know the

profile of the refractive index n of the considered fibre. The refractive index n is a real valued function

depending on x ¼ ðx1; x2Þ and satisfying n 2 L1ðR2Þ with infx2R2 nðxÞ ¼ n� > 0. In addition, we assume
throughout this paper that all the optical fibres have a homogeneous cladding. This means that the refractive

index is constant outside the core, i.e.,

nðxÞ ¼ n1 8x 2 Xe ¼ R2 n X: ð1Þ

Moreover, in order to ensure the propagation of guided modes, we assume as in [6,18] that the refractive

index satisfies

nþ > n1; ð2Þ

where

nþ ¼ sup
x2R2

nðxÞ:
2.2. Problem statement: the eigenvalue problem

We consider, in this work, the guided modes propagation under the weak guidance assumptions. This

means that the refractive index variations are small compared to the wavenumber k. Under these as-

sumptions, the longitudinal component of the electromagnetic field is neglected. Therefore, the Maxwell

system is decoupled and any transverse component of the electromagnetic field u and its corresponding

propagation constant b satisfy the following eigenvalue problem [18,25,30]:
Fig. 1. (a) An optical fibre. (b) Transverse section of an optical fibre.
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ðEVPÞ Find k 2�0; V 2½ and u 2 H 1ðR2Þ; u 6¼ 0 such that � Duþ qðxÞu ¼ �ku in R2; ð3Þ

where

k ¼ b2 � k2n21; ð4Þ
V 2 ¼ k2 n2þ
�

� n21
�
; ð5Þ
qðxÞ ¼ �k2 n2
�

� n21
�

ð6Þ

and where k is the wavenumber (k > 0).

For more details on the derivation and the physical background of EVP, we invite the reader to see, for

example [30, pp. 403–407 and Appendix].

Note that q is a bounded function with a compact support included in the fibre�s core X. k (resp., u) is an
eigenvalue (resp., its associated eigenfunction) of EVP. Hence, determining the guided modes that prop-

agate, under the weak guidance assumptions, in the considered optical fibre, requires solving the eigenvalue
problem EVP that is set in the whole plane R2.

EVP has been thoroughly investigated and a considerable amount of mathematical results pertaining to

existence, number, and dependence with respect to opto-geometrical parameters of guided modes can be

found in [6,8,18,25,30], among other references.
3. Announcement of the main results

The application of a finite element technique to the solution of the eigenvalue problem EVP requires first

the definition of a bounded computational domain. This is typically achieved by surrounding the given core

of the fibre by an artificial boundary R at some distance, that is usually measured in multiple of the

wavelength of interest, from the interface core–cladding C. Then, a boundary condition that prohibits the

reflection of the guided waves from the artificial boundary is specified on R.
Our aim in this work is to propose the following new formulation of EVP in a bounded domain, where R

can be an arbitrarily shaped convex artificial boundary (see Fig. 2):

ðBVPÞ Find kR 2 �0; V 2½ and uR 2 H 1ðXRÞ; uR 6¼ 0 such that
ðBVPÞ � DuR þ qðxÞuR ¼ �kRuR in XR; ð7Þ
Core 

Cladding
Core Core 

Cladding

Γ
ΣΩΣ

Cladding

Γ

Σ
ΩΣ

Γ

ΩΣ

Σ

(c) (b) (a) 

Fig. 2. Examples of optical fibres surrounded by artificial boundaries. (a) An elliptical-shaped artificial boundary. (b) An triangular-

shaped artificial boundary. (c) An cigar-shaped artificial boundary.
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ðBVPÞ ouR
om

þMmðkRÞuR ¼ 0 on R; ð8Þ

XR is a bounded domain, with R as its outer boundary. We place R in such a way that XR contains the core

of the considered fibre (Fig. 2), and hence the support of the function q 2 L1ðR2Þ.~mm denotes the outward

directed unitary normal vector. Besides, we assume that the artificial boundary R is at least Lipschitzian.

Finally, the trace operator MmðkRÞ (m ¼ 1; 2) is defined as follows:

M1ðkRÞ ¼
ffiffiffi
k

p
I ð9Þ

and

M2ðkRÞ ¼
ffiffiffi
k

p�
þK

2

�
I; ð10Þ

K denotes the curvature of the considered artificial boundary R [12] and I the identity mapping.

The following four observations are noteworthy:

• First, the Fourier–Robin type condition (8) is not an exact condition. It is, in fact, an approximation of

the DtN (the Dirichlet to Neumann) operator. Indeed, since the DtN operator is a pseudo-differential op-

erator of order +1 [28], we can apply Nirenberg�s decomposition theorem and derive a Taylor expansion
of this operator [19]. We propose later (cf. Section 4.1) a new procedure to approximate such a series and

prove that the constructed conditions (8 and 9) (resp., (8 and 10)) is an approximation of order 1/2 (resp.,

1). We point out that it is also possible to use this procedure for constructing conditions of higher order.

However, these higher order conditions are not of practical interest because their expressions contain the

eigenvalue kR with negative powers [3].

• Second, in the case where R is a circle, the condition (8 and 9) is identical to the one proposed in

[11]. However, the requirement of a circular-shaped artificial boundary R often leads to a larger than

needed computational domain, which hampers computational efficiency. Hence, this new condition is
more versatile than the previous one [11] since it is applicable to an arbitrarily shaped but con-

vex artificial boundary and then, it has the potential for reducing the size of the computational

domain.

• Third, since the exterior boundary condition (8) associated with either Eq. (9) or Eq. (10) is not an exact

condition, BVP is not equivalent to EVP in the sense that, the restriction to the bounded domain XR of

exact eigenfunctions are a priori not solutions of BVP. This is not the case when an exact condition such

as the DtN operator is applied on a circular exterior boundary [7]. Nevertheless, applying the spectral

theory of self-adjoint operators to BVP (see Section 4.2) shows that the solutions of BVP have in fact
the same properties (existence, finitude, continuous dependence with respect to the opto-geometrical pa-

rameters, etc.) as the exact guided modes solutions of EVP. Moreover, the numerical results we have re-

ported in Section 5 indicate clearly that the exact guided modes solutions of EVP are approximated by

the solutions of BVP with an excellent level of accuracy.

• Last, it is important to note that we have reduced the classical eigenvalue problem EVP defined in the

whole domain R2 to the boundary value problem BVP defined in a bounded domain XR but nonlinear

with respect to the eigenvalues kR. Hence, the obtained problem is no longer a classical eigenvalue prob-

lem. However, since the corresponding variational formulation to BVP is given by

Find kR 2 �0; V 2½ and uR 2 H 1ðXRÞ; uR 6¼ 0 such that aRðkR; uR; vÞ ¼ �kR

Z
XR

uRvdx;

8v 2 H 1ðXRÞ ð11Þ
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where

aRðkR; uR; vÞ ¼
Z
XR

ruR � rvdxþ
Z
XR

qðxÞuRvdxþ
Z
R
MmðkRÞuRvdrx: ð12Þ

Wewill show later (see Section 5) that the nonlinearity of this new formulation does not represent – at least

from a numerical point of view – a major difficulty to overcome. Indeed, the application of the finite el-

ement discretization to the variational formulation given by Eqs. (11) and (12) leads to solving a gen-

eralized eigenvalue problem, for which there exists a wide choice of numerical solution methods [15,23].
4. Mathematical analysis

In this section, we first present our procedure for deriving the boundary conditions that can operate on

arbitrarily shaped artificial boundaries (see Eq. (8)). Then, we analyze the mathematical properties of the

solutions of the obtained boundary value problem BVP.

The proposed approach for constructing non-reflecting boundary conditions distinguishes itself from

existing methodology by (a) it does not require high frequency regime assumption and (b) it does not assume

specific geometries (such as a circle) for the artificial boundary. Our approach assumes, however, that the

artificial boundary needs to be (a) convex, which is not a restrictive condition for practical applications, and

(b) located sufficiently far from the boundaryC1, of the smallest convex containing the cores of the considered
waveguide. The numerical results we report in this paper tend to indicate that the artificial boundary is

typically located at a fraction of a wavelength from C1 in order to achieve an acceptable level of accuracy.
4.1. Construction of the boundary conditions

We present a general and rigorous procedure for constructing the boundary conditions (8). The idea is to

approximate the DtN operator using the pseudo-differential calculus. This approximation is performed in

two steps. The first one consists in deriving a Taylor expansion of the DtN operator by applying Nirenberg�s
decomposition theorem [19]. This classical expansion is called the factorization step of the approximation.

The second one is the so-called localization step of the approximation. It consists in computing truncated

sums of the obtained series and approximating the resulting operator by a differential operator under some

geometrical assumptions on R that we will specify in Section 4.1.2. A similar technique has been already

proposed by Antoine et al. [2] to derive radiation boundary conditions for the exterior Helmholtz equation.

However, the technique developed in [2] is based on a high frequency regime assumption at the localization

step. Hence, its application to optical waveguide problems is valid only for higher guided modes, i.e., the

eigenvalues kR must be large which constitutes a severe limitation. Our approach does not require such an
assumption and then allows to derive the boundary conditions (8) independently of the frequency band.
4.1.1. The factorization procedure

It is well known that in general the key element in constructing artificial boundary conditions is the mode

selection which would guarantee the appropriate behavior of the field at the artificial boundary. Since the

operator that we consider here is a Helmholtz-type equation, the idea we propose is to perform this mode

selection by going back to the unsteady wave equation and identifying the appropriate modes based on

their direction of propagation at the artificial boundary. This approach is not new and has been adopted by
Antoine et al. [2] to derive non-reflecting boundary conditions for the Helmholtz equation.

We first consider C1 the boundary of the smallest convex domain that contains the cores of the con-

sidered waveguide. We point out that if the core–cladding boundary C is convex, then C ¼ C1. Then, we
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rewrite the Laplace operator in a system of local coordinates defined in the so-called tubular neighborhood

of the core–cladding boundary C1. This type of neighborhood can be parameterized as follows:

Rr ¼ fx 2 R2 jx ¼ p þ r~mmðpÞg; ð13Þ

where r is a non-negative fixed parameter, p ¼ pðsÞ is the orthogonal projection of x onto C1, s is the

curvilinear abscissa, and~mm is the outward unitary vector, normal to C1. We note that Rr is parallel to C1 and

we have R0 ¼ C1.

Hence, by setting

uðxÞ ¼ euuðr; sÞ ð14Þ

and applying the chain rule, we deduce that the Laplace operator can be written in the coordinates ðr; sÞ as
follows:

Du ¼ o2reuu þKreuu þ h�1os h�1oseuu� �
; ð15Þ

where Kr is the curvature of Rr obtained from the curvature K of C1 as follows:

Kr ¼
K

1þ rK
ð16Þ

and

h ¼ 1þ rK: ð17Þ

Next, we introduce the following intermediate function:

vðr; s; tÞ ¼ e
ffiffi
k

p
teuuðr; sÞ; ð18Þ

where t is a new variable that can be viewed as a time variable.
Since the couple ðk; uÞ is a solution of EVP, we deduce from Eqs. (15) and (18), that the function v

satisfies

Pv ¼ o2r vþKrorvþ h�1os h�1osv
� �

� o2t v ¼ 0: ð19Þ

We note that P is nothing but the wave operator. Hence, unlike the case of the Helmholtz equation [2], P is

a hyperbolic operator. Therefore, the application of Nirenberg�s decomposition theorem to P is straight-

forward [19]. Here, we briefly summarize the main steps of this factorization.

First, we introduce the dual variables ðx; nÞ of ðt; sÞ so we can apply the Fourier transform to the op-
erator P and compute its symbol P. Hence, we have

Pðr; s; t; n;xÞ ¼ o2r þKror þ ih�1ðosh�1Þn� h�2n2 þ x2 ¼ 0: ð20Þ

Therefore, there exists two classical pseudo-differential operators Aþ and A� of order þ1, depending

smoothly on r, such that the operator P can be decomposed as follows:

P ¼ orð þ iA�Þ orð þ iAþÞ: ð21Þ

In addition, the uniqueness of this decomposition is insured by the following integral representation:

A�vðr; s; tÞ ¼
Z

eðixtþnsÞa�ðr; s; t; n;xÞv̂vðr; n;xÞdndx; ð22Þ
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where aþ and a� are, respectively, the symbols of Aþ and A� [9]. v̂v is the Fourier transform of v with respect

to the variables of time and space ðt; sÞ. Moreover, it is well known that since Aþ and A� are classical

pseudo-differential operators in OPS1 [27], their symbols can be expanded as follows:

a� ’
Xþ1

j¼�1

a��j; ð23Þ

where the equivalence in Eq. (23) is to be understood in the sense specified in [2]. a��j are continuous

functions with respect to the variables ðr; s; tÞ and are homogeneous functions of degree �j with respect to

the dual variables ðx; nÞ.
On the other hand, similarly to [2], from Eqs. (20) and (21), one can verify that the operators Aþ and A�

satisfy

A� þ Aþ ¼ �iKr; ð24Þ
A�Aþ � iOpðoraþÞ ¼ o2t � h�1os h�1osv
� �

; ð25Þ

where OpðoraþÞ is the pseudo-differential operator which symbol is oraþ.
Moreover, the operators Aþ and A� are uniquely obtained from the computation of their symbols aþ and

a� [9,27]. Hence, we can express the system (24) and (25) in terms of the symbols as follows [27]:

a� þ aþ ¼ �iKr; ð26Þ
Xþ1

a¼0

ð�iÞa

a!
oana

�oas a
þ � ioraþ ¼ �ðx2 � h�2n2Þ � ih�1 osh�1

� �
n: ð27Þ

Next, using the expansion (23), we identify in the system (26) and (27), the symbols with the same degree of

homogeneity. This allows to derive a recursive formula to express all of the symbols aþ�j from the first one

aþ1 . More specifically, from Eqs. (23) and (26), we deduce that

a��j þ aþ�j ¼
�iKr if j ¼ 0;
0 if j 6¼ 0:

�
ð28Þ

Therefore, the combination of Eqs. (27) and (28), completely determines the symbol aþ and then the op-

erator Aþ. Indeed, each symbol aþ�j can be computed from the previous as follows:

aþ1 ¼ ðx2 � h�2n2Þ1=2; ð29Þ
aþ0 ¼ � i

2
Kr þ

i

2aþ1
h�1 osh�1
� �

nþ i

4 aþ1ð Þ2
orh�2
� �

n2 þ i

4 aþ1ð Þ3
h�2 osh�2
� �

n3; ð30Þ
aþ�j ¼
1

2aþ1

X
lþk¼j�1
lP 0;kP 0

a��la
þ
�k

0BBBB@ þ
Xjþ1

a¼1

ð�iÞa

a!

X
lþk¼j�1�a
lP�1;kP�1

oana
�
�lo

a
s a

þ
�k � ioraþ�jþ1

1CCCCA; j > 1: ð31Þ

We note that the expansion of each symbol aþ�j; jP 0 depends on aþ1 , which in turn depends on the domain

of the dual variables ðx; nÞ.
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By setting

WðrÞ ¼ x2 � h�2n2 ð32Þ

it follows from Eq. (17) that

W0ðrÞ ¼ 2h�3Krn
2: ð33Þ

Since the artificial boundary R is assumed to be convex, its curvature Kr is then positive. Therefore, we

deduce that WðrÞ is a non-decreasing function and has the sign of

Wð0Þ ¼ x2 � n2: ð34Þ

Since the dual variables ðx; nÞ are in the cone of propagation corresponding to the hyperbolic region where

outgoing and ingoing waves propagate [17], and since we are interested only in outgoing waves, we have

Wð0Þ > 0: ð35Þ

Therefore

WðrÞ ¼ x2 � h�2n2 > 0: ð36Þ

Hence, aþ�j is a real number and the solutions of EVP satisfy (in the micro-local sense)

orvþ iAþv ¼ 0 on Rr: ð37Þ

So far, we are in principle able to compute all symbols from the system (29)–(31) and to deduce uniquely the
operator Aþ. In practice, only few of them are really computed. Therefore, the operator Aþ is approximated

by an operator Aþ
m which symbol r�m is given by

r�m ¼
Xm
j¼�1

aþ�j ð38Þ

for a fixed mP�1. Then, Aþ
m is a pseudo-differential operator in OPS1 and ðAþ � Aþ

mÞ 2 OPS�ðmþ1Þ [27].
In summary, by approximating the DtN operator via the factorization of its symbol, we have derived a

family of boundary conditions defined by

orvþ iAþ
mv ¼ 0 on Rr: ð39Þ

Unfortunately, this result is – at this step – not of practical interest because Aþ
m is a non-local operator.

Next, we propose a procedure to localize the operator Aþ
m in order to obtain local boundary conditions

that are easy to implement in any finite element code. The localization process we suggest consists basically

in approximating the pseudo-differential operator Aþ
m by a differential operator under some geometrical

assumptions that we will specify in the following section.

4.1.2. The localization process

The objective in this section is to approximate the global boundary condition given by Eq. (39) to

construct local artificial boundary conditions that preserve the sparsity pattern of the finite element dis-

cretization. To do this, we assume that rK is large enough and then perform the Taylor expansion of the
symbol r�m of Aþ

m with respect to the inverse of rK. This geometrical assumption means that the artificial

boundary Rr is located very far away from the interface core–cladding C1 as well as Rr and C1 have a similar

curvature.
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In order to derive the Taylor expansion of the symbol r�m with respect to 1=rK, we compute first the

Taylor expansion of the symbols aþ�j ðjP� 1Þ.

4.1.2.1. Taylor expansion of the symbol aþ1 . First, we rewrite Eqs. (17) and (29) as follows:

aþ1 ¼ x 1

�
� h�2n2

x2

�1=2

; ð40Þ
h�2ðr; sÞ ¼ 1

r2K2
1

�
þ 1

rK

��2

: ð41Þ

Therefore, we deduce from Eq. (41) that

h�2ðr; sÞ ¼ 1

r2K2
1

�
� 2

rK
þ 1

rK
e

1

rK

� ��
; ð42Þ

where the real function e satisfies

lim
s!0

eðsÞ ¼ 0: ð43Þ

Hence, from Eqs. (40) and (42), we deduce that a Taylor expansion of the first symbol aþ1 is given by

aþ1 ¼ x� n2

2x
1

r2K2
þ 3n2

2x
1

r3K3
þ 1

r3K3
e

1

rK

� �
: ð44Þ
4.1.2.2. Taylor expansion of the symbol aþ0 . The derivation of such expansion requires the following in-

termediate results:

• From Eq. (16), we have

Kr ¼
1

r
1

�
þ 1

rK

��1

: ð45Þ

Therefore, we deduce that

Kr ¼
1

r
1

�
� 1

rK
þ 1

r2K2
þ 1

r2K2
e

1

rK

� ��
: ð46Þ

• From Eq. (17), we deduce that

h�1osh�1 ¼ �h�3rK0ðsÞ: ð47Þ

Using again Eq. (17), we rewrite Eq. (47) as follows:

h�1osh�1 ¼ �rK0ðsÞ 1

r3K3
1

�
þ 1

rK

��3

: ð48Þ

Therefore, we deduce that

h�1osh�1 ¼ 1

K

�K0ðsÞ
r2K2

 
þ 3K0ðsÞ

r3K3
þ 1

r3K3
e

1

rK

� �!
: ð49Þ
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• From Eqs. (40) and (42), it follows that

1

aþ1
¼ 1

x
1

�
� n2

x2

1

r2K2

�
� 3

r3K3
þ 1

r3K3
e

1

rK

� ����1=2

: ð50Þ

Then,

1

aþ1
¼ 1

x
þ n2

2x3

1

r2K2
� 3n2

2x2

1

r3K3
þ 1

r3K3
e

1

rK

� �
: ð51Þ

Hence, we deduce from Eqs. (49) and (51) that

ih�1osh�1

2aþ1
¼ �iK0ðsÞn

2Kx
1

r2K2
þ 3iK0ðsÞn

2Kx
1

r3K3
þ 1

r3K3
e

1

rK

� �
: ð52Þ

• From Eq. (50), we obtain

1

aþ1ð Þ2
¼ 1

x2
1

�
� n2

x2

1

r2K2

�
� 3

r3K3
þ 1

r3K3
e

1

rK

� ����1

: ð53Þ

Therefore, we deduce that

1

ðaþ1 Þ
2
¼ 1

x2
þ n2

x4

1

r2K2
� 3n2

x4

1

r3K3
þ 1

r3K3
e

1

rK

� �
: ð54Þ

Moreover, from Eq. (17), we deduce that

orh�2 ¼ �2h�3K: ð55Þ

Besides, from Eq. (41), we deduce that

h�3 ¼ 1

r3K3
þ 1

r3K3
e

1

rK

� �
: ð56Þ

Therefore, it follows from Eqs. (54)–(56) that

iorh�2

4 aþ1ð Þ2
¼ � iK

2x2

1

r3K3
þ 1

r3K3
e

1

rK

� �
: ð57Þ

• Finally, from Eq. (50), we have

1

aþ1ð Þ3
¼ 1

x3
1

�
� n2

x2

1

r2K2

�
� 3

r3K3
þ 1

r3K3
e

1

rK

� ����3=2

: ð58Þ

Therefore, we deduce that

1

aþ1ð Þ3
¼ 1

x3
þ 3n2

2x5

1

r2K2
� 15n2

6x5

1

r3K3
þ 1

r3K3
e

1

rK

� �
: ð59Þ

Besides, from Eq. (17), we obtain that

h�2osh�2 ¼ �2rK0ðsÞh�5: ð60Þ

Therefore, using the Taylor expansion of h with respect to 1=rK, we deduce that



H. Barucq et al. / Journal of Computational Physics 193 (2004) 666–696 677
h�2osh�2 ¼ 1

r4K4
e

1

rK

� �
: ð61Þ

Hence, it follows from Eqs. (59) and (61) that

h�2osh�2

aþ1ð Þ3
¼ 1

r4K4
e

1

rK

� �
: ð62Þ

We are now ready to deduce the Taylor expansion of the symbol aþ0 with respect to 1=rK. Indeed, from

Eqs. (46), (49), (52), (57) and (62) one can verify that

aþ0 ¼ � iK

2

1

rK
þ K

2

 
� iK0

2K2

n
x

!
1

r2K2

þ �iK

2

 
þ 3iK0ðsÞ

2K

n
x
� iK

2

n2

x2

!
1

r3K3
þ 1

r3K3
e

1

rK

� �
: ð63Þ
4.1.2.3. Taylor expansion of the symbol aþ�j; jP1. A compact representation of such expansion is given by

the following result:

Proposition 1. For every jP 1 fixed, any Taylor expansion T ðaþ�jÞ of the symbol aþ�j with respect to 1=rK can

be expressed as follows:

T ðaþ�jÞ ¼
1

wj
Q

1

rK
;
n
x

� �
; ð64Þ

where Q is a polynomial of the variables 1=rK and n=x, which coefficients are continuous functions with

respect to s.

Proof of Proposition 1. This result is an immediate consequence of the recursion relations given by Eqs.

(29)–(31). Indeed, it is easy to verify that the symbol aþ�j can be written as follows:

aþ�j ¼ ðaþ1 Þ
�jQ1 r; s;

n
aþ1

� �
; jP � 1; ð65Þ

where Q1 satisfies

Q1ðr; s;X Þ ¼
X

06 a6 d

caðr; sÞX a ð66Þ

and ca are smooth functions with respect to r and s.
Therefore, Eq. (64) is deduced from Eqs. (44), (65) and (66).

At this point, it is important to observe in Eqs. (44) and (63) that the coefficients corresponding to

1=ðrKÞl; lP 2 depend on x with negative powers and therefore give rise to boundary conditions depending

on k with negative powers. Hence, in order to derive boundary conditions of practical interest, we need to

truncate the expression given by Eqs. (44) and (63) and only keep terms of order less or equal to 1 with
respect to 1=rK. Moreover, when we compute r�m [see Eq. (38)], we also neglect the symbols aþ�j; jP 1

since their expressions are proportional to 1=xj; jP 1 [see Eq. (64)].

Given that, we deduce the two following symbols r�m of practical interest
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r1 ¼ x ð67Þ

and

r0 ¼ x� iK

2

1

rK
: ð68Þ

Before retrieving the expression of the operator Aþ
m (m ¼ 0; 1) from the symbol r�m, given by Eqs. (67) and

(68), and in order to deduce the expression of the boundary conditions given by Eq. (39), we need to give a

precise criterion for comparing the accuracy of each condition. Hence, similarly to [2], we introduce the

following definition. �

Definition 1. We call a complete condition of order m
2
þ 1, the condition

omuþOpðerr�mÞu ¼ 0 on RR; ð69Þ

where

err�m ¼ r�mjr¼R: ð70Þ

We are now ready to establish the following result

Theorem 1. The condition of order 1=2 is given by

omuþ
ffiffiffi
k

p
u ¼ 0 on R ð71Þ

and the condition of order 1 is expressed as follows:

omuþ
ffiffiffi
k

p
uþKR

2
u ¼ 0 on R; ð72Þ

where KR is the curvature of R.

Proof of Theorem 1. We recall that our aim is to derive boundary conditions of the following form:

omvþ iAþ
mv ¼ 0; ð73Þ

where

v ¼ e
ffiffi
k

p
tuðr; sÞ: ð74Þ

First, let us assume that R is located at a distance r ¼ R, i.e., R ¼ RR. At this distance, the symbols r1 and r0

are given by

r1jr¼R ¼ err1 ¼ x; ð75Þ
r0jr¼R ¼ err0 ¼ x� iK

2

1

RK
: ð76Þ

Therefore, Eq. (73) can be written as follows:
omvjr¼R þOpðixÞvjr¼R ¼ 0 for m ¼ �1 ð77Þ
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and

omvjr¼R þOp ix

�
þK

2

1

RK

�
v ¼ 0 for m ¼ 0: ð78Þ

Since x is the dual variable of t, we deduce from Eqs. (74) and (77) that

omuþ
ffiffiffi
k

p
u ¼ 0 on R: ð79Þ

Similarly, from Eqs. (74) and (78), we have

omuþ
ffiffiffi
k

p�
þ 1

2R

�
u ¼ 0 on R: ð80Þ

On the other hand, from Eq. (16) we note that 1=R is an approximation of the first order with respect to

1=RK of the curvature KR of R. Therefore, we modify Eq. (80) and set

omuþ
ffiffiffi
k

p�
þKR

2

�
u ¼ 0 on R; ð81Þ

which achieves the Proof of Theorem 1. �

Remark 1. We point out that it is not of practical interest to construct in this case higher order boundary

conditions. Indeed, the expression of such boundary conditions contain the eigenvalue kR with negative

powers, as shown in [3]. Therefore, using these boundary conditions will lead to eigenvalue problems

that are strongly nonlinear in terms of kR. Such eigenvalue problems might be extremely difficult to solve

numerically.

4.2. Spectral analysis

We investigate now the mathematical properties of the solutions of BVP. Because of its nonlinearity,

BVP is not well suited for carrying out such a study. However, since BVP resembles the eigenvalue problem

analyzed in [11], we tailor the approach adopted in [11] to accomplish this investigation. Therefore, we

carry out the spectral analysis of BVP in two steps. First, we introduce a family of classical eigenvalue

problems and apply the spectral theory of self-adjoint operators [21,22]. Then, we solve a family of fixed-

point problems using a classical argument of monotonicity in R.

4.2.1. Classical eigenvalue problem

For a given parameter a 2�0; V 2½, we introduce the following family of classical eigenvalue problems:

ð gBVPðaÞBVPðaÞÞ Find lRðaÞ 2 R and uR;a 2 H 1ðXRÞ; uR;a 6¼ 0 such that
ð gBVPðaÞBVPðaÞÞ � DuR;a þ eqqðxÞuR;a ¼ lRðaÞuR;a in XR; ð82Þ
ð gBVPðaÞBVPðaÞÞ o

om
uR;a þ fsðaÞuR;a ¼ 0 on R; ð83Þ

where

l ðaÞ ¼ k2n2 � b2 ; ð84Þ
R þ R;a
eqqðxÞ ¼ k2 n2
�

� n2
�

ð85Þ
þ
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and fs ðs ¼ 1; 2Þ is a non-negative real function. The expression of fs depends on the choice of the boundary

operator Ms; s ¼ 1; 2 [see Eqs. (9) and (10)]. More specifically, we have

fsðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2 � a

p
; if s ¼ 1; ð86Þ
fsðaÞ ¼ f1ðaÞ þ
K

2
; if s ¼ 2: ð87Þ

Moreover, we associate to gBVPBVPðaÞ the following variational problem:

ð gVBVPVBVPðaÞÞ Find lRðaÞ 2 R and uR;a 2 H 1ðXRÞ; uR;a 6¼ 0 such that

aRða; uR;a; vÞ ¼ lRðaÞ
Z
XR

uR;avdx 8v 2 H 1ðXRÞ; ð88Þ

where aRða; �; �Þ is a bilinear form defined by

aRða; v;wÞ ¼
Z
XR

rv � rwdxþ
Z
XR

eqqðxÞvwdxþ
Z
R
fsðaÞvwdrR 8v;w 2 H 1ðXRÞ: ð89Þ

It is then easy to verify that for a given a 2�0; V 2½, the bilinear form aRða; �; �Þ is symmetric, continuous on
H 1ðXRÞ � H 1ðXRÞ. Moreover, since R is assumed to be convex, i.e., its curvature KR is positive, then

aRða; �; �Þ satisfies the following G€aarding inequality.

For a given c0 > 0 there exists a positive constant cðc0Þ such that

8cP c0 aRða; v; vÞ þ ckvk2L2ðXRÞ P cðc0Þkvk
2

H1ðXRÞ 8v 2 H 1ðXRÞ: ð90Þ

Therefore, we are able to apply the spectral theory of self-adjoint operators [21,22] and to conclude that the

eigenvalues of gBVPðaÞBVPðaÞ are positive, countable, with a finite multiplicity. Moreover, we characterize them

via the Min–Max formula [10,21] as a sequence defined by

ll
RðaÞ ¼ Min

Vl2Vl

Max
v2Vl

aRða; v; vÞ
kvk2L2ðXRÞ

; ð91Þ

where

0 < l1
RðaÞ6 l2

RðaÞ6l3
RðaÞ6 � � � 6 ll

RðaÞ6 � � � ð92Þ

and satisfying

lim
l!þ1

ll
RðaÞ ¼ þ1: ð93Þ

Moreover, similarly to [11], it is easy to verify that for l fixed, the function

I ¼�0; V 2½! Rþ;

a 7! ll
RðaÞ

ð94Þ

is non-increasing, continuous, and lima!V 2 ll
RðaÞ exists and is finite.
4.2.2. Fixed-point problems

The solutions of BVP can be characterized as the solutions of the following family of fixed-point

problems:
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For lP 1 given,

ðPl
RÞ Find a 2 I ¼ �0; V 2½ such that ll

RðaÞ ¼ a: ð95Þ

Because of the monotonicity and the continuity of the function a ! ll
RðaÞ, we can apply the fixed-point

theorem and conclude that, for l given, P l
R has exactly one solution providing that lima!V 2 ll

RðaÞ6 V 2.

Therefore, the boundary value problem BVP admits at most a finite number of eigenvalues.
Finally, we prove in the following proposition that BVP admits at least one eigenvalue.

Proposition 2. Assume that the refractive index n satisfiesZ
R2

n2
�

� n21
�
dx > 0: ð96Þ

Then; if the artificial boundary R is located far enough from the interface core–cladding C1, BVP has at least

one eigenvalue.

Proof of Proposition 2. In order to establish this proposition, we prove that P 1
R admits a fixed-point l1

R. To

do this, it suffices to establish that

l1
RðaÞ � V 2 < 0 8a 2 �0; V 2½: ð97Þ

From Eqs. (88) and (91), we obtain

l1
RðaÞ � V 2

6

aRða; v; vÞ � V 2kvk2L2ðXRÞ

kvk2L2ðXRÞ
8v 2 H 1ðXRÞ: ð98Þ

Similarly to Proposition 3 in [11], we assume that R is far enough from C1 such that there exists two positive

real numbers a and R such that

X � Bð0; aÞ; Bð0; aÞ � Bð0;RÞ and Bð0;RÞ � XR: ð99Þ

We also introduce the following function:

vRðxÞ ¼
1 if jxj6 a;
logðRÞ�log jxj
logðRÞ�logðaÞ if a6 jxj6R;
0 if jxjPR:

8<: ð100Þ

It is easy to verify that vR 2 H 1ðXRÞ \ H 1ðR2Þ and

krvRkL2ðR2Þ !
R!þ1

0: ð101Þ

Therefore, for R large enough, (97) is deduced from Eqs. (98) and (101). �
5. Numerical illustration

We illustrate in this section, by several numerical experiments, the potential of the use of boundary

condition (8) associated with Eq. (10) applied on an artificial boundary R that is parallel to the interface

core–cladding of the considered fibre, rather than the condition suggested in [11], for improving the

computational efficiency of the finite element method applied to the solution of the waveguide problem
BVP.
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5.1. Discretization method and iterative solver

The variational problem (see Eqs. (11) and (12)) is approximated using a linear finite element method
[21]. In practice, the computational domain XR is decomposed into triangles, using a uniform mesh. We

point out that in order to obtain an acceptable level of accuracy, the ratio k=h, where k is the wavelength

and h is the discretization step, is chosen to be equal to 50 in all the numerical experiments reported in this

paper. This choice is motivated by the grid convergence study performed by Djellouli et al. [11] (see Fig. 2

and Table 1). Therefore, the proposed boundary conditions (8), associated with either Eq. (9) or Eq. (10),

introduces only additional (and standard) mass and stiffness matrices on R. The only issue that deserves

special attention is the approximation of the curvatureK of R, when R is an arbitrary convex boundary. To

compute the curvature K of a chosen artificial boundary R in the context of the linear finite element
approximation, we proceed as follows.

Let T ¼ ðABCÞ be a triangle which verticesA,B, and C belong to the artificial boundary R (Fig. 3), but

are not necessarily connected to the same finite element. The curvature of R at point B can be approxi-

mated by the following formula [26]:

KðBÞ ¼ 4mðT Þ
d1d2d3

; ð102Þ

where mðT Þ denotes the area of triangle T , and d1, d2, and d3 the lengths of its edges (Fig. 3). The area mðT Þ
can be computed by any standard technique. However, if the angle at B is sufficiently close to p – that is if

the triangle T is almost degenerate –, mðT Þ is better evaluated as follows [26]:

mðT Þ ¼ 1
4
ððaþ ðbþ cÞÞðaþ ðb� cÞÞðcþ ða� bÞÞðc� ða� bÞÞÞ1=2; ð103Þ

where a, b and c denote the lengths of the edges of triangle T after they have been ordered to satisfy

c6 b6 a: ð104Þ
Table 1

Computational efficiency of the boundary condition (8), applied on R being a circle or a square, in the case of a square-shaped fibre and

k=h ¼ 50

Boundary condition

(8) associated with

R l Number of unknowns

of GEVP

Eq. (9) Circle 1 14,763

Eq. (9) Square 1 9499

Eq. (10) Circle 1/2 5249

Eq. (10) Square 1/2 3367

d2
m(T)

C

d3

d1 A

B

Fig. 3. Computation of the curvature at a given point.
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Given that, solving the variational problem (11) and (12) consists in solving the following quadratic

eigenvalue problem

ðQEVPÞ Find khR 2 �0; V 2½ and x 2 RN ; x 6¼ 0 such that Axþ khRBxþ
ffiffiffiffiffi
khR

q
C x ¼ 0; ð105Þ

where khR is an approximation of kR and x is an eigenvector associated to khR. N is the number of degrees of

freedom (dof). A, B and C are symmetric matrices. A is the sum of a stiffness – and a mass-like matrices. B is

a mass matrix. B is then positive definite. C is a mass-type matrix defined on R. It is crucial to observe that
the matrix C is sparse (quasi-tridiagonal), because of the local characteristic of the artificial boundary

condition. In addition, the finite element approximation of the integral containing the curvature K in Eq.

(89) introduces an additional mass-like matrix on R to be added to the matrix A.
In order to solve numerically QEVP, we introduce the following generalized eigenvalue problem

GEVP

ðGEVPÞ Find lh
R 2 �0; V 2½ and z 2 R2N ; z 6¼ 0 such that eAAz ¼ lh

R
eBBz; ð106Þ

where

eAA ¼ �C �B
A 0

� �
ð107Þ

and

eBB ¼ B 0

0 B

� �
: ð108Þ

It is easy to verify that GEVP and QEVP are equivalent in the following sense:

(i) If the couple ðkhR; xÞ is a solution of QEVP, then the couple ðlh
R; zÞ, defined by

lh
R ¼

ffiffiffiffiffi
khR

q
ð109Þ

and

z ¼ x
y

� �
ð110Þ

with

y ¼ 1ffiffiffiffiffi
khR

q B�1Ax ð111Þ

is a solution of GEVP.

(ii) Conversely, if the couple ðlh
R; zÞ is a solution of GEVP, then the couple ðkhR; xÞ defined by khR ¼ ðlh

RÞ
2
and

x is the first N components of the vector z, is a solution of QEVP.

Therefore, in order to compute ðkhR; xÞ solution of QEVP, we first compute the couple ðlh
R; zÞ solution of

GEVP using any preferred eigenvalue algorithm. Then, we deduce the couple ðkhR; xÞ from (ii).

In this paper, we compute the solutions of GEVP by means of the so-called Implicitly Restarted Arnoldi

Method IRAM [15]. It is an iterative algorithm of QR-type [23,31]. The application of this method requires

solving – at each iteration – a non-symmetric linear system. We have performed such computations using
the Generalized Minimal Residual method GMRES [24].
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5.2. Accuracy and performance evaluation

The objective here is to demonstrate by several computational examples that using the boundary con-
dition (8) associated with Eq. (10) applied on an artificial boundary R that is parallel to the interface core–

cladding of the considered fibre, rather than condition (8) associated with Eq. (9) applied on R being a circle

as suggested in [11], improves the computational efficiency while maintaining the same level of accuracy.

We point out that we will not perform a grid convergence study in this paper to address the effect of the

discretization. This issue has been already investigated in details in [11]. Therefore, we have first considered

the simple case of a step-index circular-shaped fibre of radius a. This case is simple in the sense that the

dispersion curves of the guided modes, solutions of EVP can be computed analytically [18,20,25,30]. Hence,

this case is interesting because it is possible to investigate analytically, i.e., in the absence of errors due to
the finite element discretization, the performance of each boundary condition [see Eqs. (8), (9) and (8), (10)],

when R is chosen to be a circle. The numerical results reported in Appendix A indicate clearly, as expected

from the analysis therein, the superiority of the boundary condition of order 1 [see Eqs. (8) and (10)] over

the boundary condition of order 1/2 [see Eqs. (8) and (9)]. Indeed, it has been shown in Appendix A that, to

compute the propagation constants with a relative error less than 1%, the use of condition (10) rather than

condition (9), reduces the size of the computational domain by – at least – a factor 2.

In the second set of numerical experiments that we have performed, we considered only the class of step-

index optical fibres. We have computed the dispersion curves of (a) a square-shaped fibre, and (b) an optical
coupler which core is made up of two separate disks. In these experiments, we have computed the dis-

persion curves by solving the generalized eigenvalue problem GEVP, for each proposed boundary condi-

tion [see Eqs. (8), (9) and Eqs. (8), (10)] and for an artificial boundary R which shape is (a) circular, and (b)

parallel to the interface core–cladding of the considered structure. The objective here is to assess, for a

prescribed level of accuracy, the computational efficiency for each choice of the shape of R and the

boundary conditions (8), (9) and (8), (10).

Before we present the obtained numerical results for each fibre, we introduce the following classical

notation:

eVV ¼ ka
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ � n21

q
; ð112Þ
bhR ¼ khR
k2 n2þ � n21
� � ; ð113Þ

where a is a dimension that characterizes the core of the considered optical fibre. eVV is called the normalized

frequency and bhR is the numerical normalized propagation constant. Hence, we have 0 < bhR < 1.

We also point out that in all performed numerical experiments, we have set

nþ � n1 ¼ 0:01 ð114Þ

so that the weak guidance conditions are satisfied [18,25,30].
5.2.1. Case of a square-shaped fibre

We consider here the case of an optical fibre which core is a square centered at the origin and with a
side�s length equals to a ¼ 0:4 lm. The artificial boundary R is chosen to be either a circle or a square

surrounding the core of the fibre as depicted in Fig. 4. The resulting computational domain XR is discretized

with a mesh resolution k/h ¼ 50. We have then computed the dispersion curves of the first five guided

modes and compared the obtained results to those computed analytically and reported in [18].
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Fig. 5. Dispersion curves of the first five guided modes of a square-shaped optical fibre.
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We observe that for values of eVV that are far from the cut-off frequencies, the dispersion curves depicted

in Fig. 5 are computed with a relative error less than 1% when (a) condition (8) and (9) is applied on R (a
circle or a square) located – at least – at one wavelength from the corners of the interface core–cladding, i.e.,

l ¼ 1 (see Fig. 7), and (b) condition (8) and (10) is applied on R (a circle or a square) for l ¼ 1=2. Moreover,

the results reported in Table 1 indicate that the use of condition (8) and (10) (or even condition (8) and (9))

applied on R being a square rather than a circle reduces the number of unknowns of GEVP by about 36%.

Furthermore, using condition (8) and (10) applied on R being a square rather than condition (8) and (9)

applied on a circle as suggested in [11], reduces the size of GEVP by a factor 4.4 while preserving the level of

accuracy Fig. 6.
5.2.2. Case of an optical coupler

The optical coupler we consider here is an optical fibre with two circular-shaped cores. The artificial

boundary R that surrounds the cores is chosen to be either a circle or a cigar as illustrated in Fig. 7.

We assess here the computational efficiency of condition (8) by computing only the fundamental mode

that is propagating in the considered structure. The normalized frequency is fixed at eVV ¼ 2, i.e., we consider

the monomode regime, and the computational domain XR is discretized using 20 linear elements per

wavelength. We have computed the propagation constants of the odd and even fundamental modes [18] by



Fig. 6. Isovalues of the first four guided modes computed in the case of a square-shaped fibre, for k=h ¼ 50. Left column: Eq. (9);

R ¼ circle; l ¼ 1. Right column: Eq. (10); R ¼ square; l ¼ 1=2. (a) Mode Ex;y
11 . (b) Mode [Ex;y

12 ;E
x;y
21 ]. (c) Mode Ex;y

22 and (d) Mode

[Ex;y
13 ;E

x;y
31 ].
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Fig. 7. Computational domain for an optical coupler. Cigar-shaped versus circular-shaped artificial boundary R.

Table 2

Computational efficiency of the boundary condition (8), applied on R being a circle or a cigar, for three selected coupling distances d,
and for k=h ¼ 20

Boundary condition

(8) associated with

R l Number of

unknowns d=a ¼ 2

Number of

unknowns d=a ¼ 3

Number of

unknowns d=a ¼ 6

Eq. (9) Circle 1 4312 5125 8485

Eq. (9) Cigar 1 3620 4066 5297

Eq. (10) Circle 1/2 2103 2693 4984

Eq. (10) Cigar 1/2 1627 1904 2684

1.5 2.5 3.5 4.5 5.5 6.5
Coupling distance d/a

0.25

0.30

0.35

0.40

0.45

0.50

0.55

N
or

m
al

iz
ed

 p
ro

pa
ga

tio
n 

co
ns

ta
nt

 b
Σh

Σ=circle; l=1; Eq.(9)
Σ=circle; l=1; Eq.(9)
Σ=ellipse; l=1; Eq.(9)
Σ=ellipse; l=1/2; Eq.(10)
Σ=circle; l=1/2; Eq.(10)

Fig. 8. Sensitivity of the propagation constant of the fundamental mode to the coupling distance d=a. The continuous line is for the

odd mode whereas the dashed line stands for the even mode.
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Fig. 9. Dependence of the computed isovalues of the fundamental even mode of an optical fiber on the coupling distance d=a, for
k=h ¼ 20. Left column: Eq. (9); R ¼ circle; l ¼ 1. Right column: Eq. (10); R ¼ cigar; l ¼ 1=2. (a) d=a ¼ 2, (b) d=a ¼ 3 and (c) d=a ¼ 6.
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Fig. 10. Dependence of the computed isovalues of the fundamental odd mode of an optical fiber on the coupling distance d=a, for
k=h ¼ 20. Left column: Eq. (9); R ¼ circle; l ¼ 1. Right column: Eq. (10); R ¼ cigar; l ¼ 1=2. (p) d=a ¼ 2, (q) d=a ¼ 3 and (r) d=a ¼ 6.
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varying the coupling distance d=a in the interval ½2:0; 6:0�. The obtained results are reported in Table 2 and

Figs. 8–10. It is important to recall here (see [11]) that the results obtained by using condition (8) associated

with Eq. (9) applied on a circle located at one wavelength from either one of the two cores (see Fig. 7) are in
perfect agreement with those obtained by an integral method [5] (with a relative error less than 1%).

We can make here the following two observations:

• both conditions (8), (9) and (8), (10) deliver results with a comparable accuracy regardless of the choice

of the geometry of the exterior boundary R. However, the results obtained with condition (8) and (10)

require that R is located at half wavelength from the interface core–cladding (see Fig. 7) while R needs to

be at least at one wavelength from the same interface for condition (8) and (9).

• The results reported in Table 2 indicate clearly that using condition (8) and (10) applied on a cigar-

shaped exterior boundary rather than condition (8) and (9) applied on a circle reduces the number of
unknowns in GEVP by a factor ranging from 2.5 to 3.2, depending on the value of the coupling distance

d=a. More specifically, for d=a ¼ 2, i.e., in the case of a ‘‘strong’’ coupling, the factor of reduction is

about 2.5, for d=a ¼ 3, i.e., for a ‘‘mild’’ coupling, the factor of reduction is equal to 2.7, and for

d=a ¼ 6, i.e., a ‘‘weak’’ coupling, the factor of reduction is about 3.2.
6. Summary and conclusion

By approximating the DtN operator using the micro-local analysis, we have derived exterior boundary

conditions to reduce the eigenvalue problem EVP, that characterizes the propagation of guided waves in

optical structures, to the generalized eigenvalue problem BVP set in a bounded domain.

Unlike the condition suggested in [11] which can operate only on circular-shaped fictitious boundaries,

the suggested conditions can be applied on arbitrarily shaped but convex exterior boundaries. Hence, these

new conditions allow the utilization of artificial boundaries that circumscribe more closely the interface

core–cladding of the considered optical waveguide than the circular boundaries, and therefore, improve

significantly the computational efficiency of the finite element solution of the obtained generalized eigen-
value problem GEVP. Indeed, the numerical results reported in this paper, indicate that condition (8) and

(10) reduces the number of GEVPs unknowns by a factor ranging between two and six, depending on the

geometry of the optical waveguide, while maintaining the level of accuracy.
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Appendix A. Case of a step-index circular-shaped fibre: analytical study

Our aim here is to demonstrate analytically that using the boundary condition (8) associated with Eq.

(10) rather than Eq. (9) can improve significantly the computational efficiency by reducing the size of the
computational domain.

To accomplish such analysis, we consider the particular case of a step-index optical fibre with a circular-

shaped core of radius equals to 1, surrounded by an artificial boundary R chosen to be a circle of radius

R > 1 (see Fig. 11). The obtained computational domain XR is then a disk of radius R.
Then, the use of polar coordinates allows to prove that the propagation constants solutions of BVP can

be characterized as solutions of a dispersion equation. Therefore, we are able to compute the dispersion



R

Ω
O

Σ a=1

Fig. 11. A step-index circular-shaped optical fiber, with a circular-shaped artificial boundary R.
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curves of the guided modes and evaluate the accuracy of the obtained results in the absence of finite element

disretization errors.
To do this, we first introduce the following convenient notations:

k21;R ¼ ð1� bRÞeVV 2 and k22;R ¼ �bR eVV 2; ðA:1Þ
kj;R ¼
ffiffiffiffiffiffiffiffiffiffiffi
k22;R

			 			r
; j ¼ 1; 2; ðA:2Þ

where eVV is the normalized frequency and bR is the normalized propagation constant solution of BVP.

• Jm (resp., H 1
m ) is Bessel (resp., Hankel) function of first kind; m 2 N [1]

• Km and Im are the modified Bessel functions of the first kind [1].

We are now ready to establish one of the main results of this appendix.

Lemma A.1. The normalized eigenvalues bR solutions of BVP satisfy the following alternative ðDEÞ either

k1;R
Jmþ1ðk1;RÞ
Jmðk1;RÞ

¼ k2;R
Kmþ1ðk2;RÞ
Kmðk2;RÞ

1þ CðR; mÞ Imþ1ðk2;RÞ
Kmþ1ðk2;RÞ

1� CðR; mÞ Imðk2;RÞ
Kmðk2;RÞ

24 35; ðA:3Þ
if Kmðk2;RÞ � CðR; mÞImðk2;RÞ 6¼ 0 ðA:4Þ

or

Jmðk1;RÞ ¼ 0 if condition ðA:4Þ is not satisfied ðA:5Þ

where

CðR; mÞ ¼
k2;RK 0

mðk2;RRÞ þ k2;R þ 1
2R


 �
Kmðk2;RRÞ

k2;RI 0mðk2;RRÞ þ k2;R þ 1
2R


 �
Imðk2;RRÞ

: ðA:6Þ
Proof of Lemma A.1. We prove this result in four steps.

Step 1. We adopt the following representation in polar coordinates of the eigenvector uR associated to the

eigenvalue bR, solution of BVP.

uRðxÞ ¼ euuRðrÞeimh; r > 0; h 2 ½0; 2p½ and m 2 N; ðA:7Þ
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Step 2. One can easily verify that euuR is of the form

euuRðrÞ ¼
AmJmðk1;RrÞ; 0 < r < 1;
BmKmðk2;RrÞ þ CmImðk2;RrÞ; 1 < r < R;

�
ðA:8Þ

where Am, Bm, and Cm are three constants depending on m and R, that are determined from the artificial

boundary condition (8) associated with Eq. (10) and the transmission conditions at the interface core–

cladding of the considered fibre.

Step 3. We rewrite the condition (8) associated with Eq. (10) in polar coordinates as follows.

deuuR

dr
þ k2;ReuuR þ

1

2R
euuR ¼ 0; r ¼ R: ðA:9Þ

From Eqs. (A.8) and (A.9), we deduce that

Bmk2;RK 0
mðk2;RRÞ þ Cmk2;RI 0mðk2;RRÞ þ Bmk2;RKmðk2;RRÞ þ Cmk2;RImðk2;RRÞ

þ 1

2R
BmKmðk2;RRÞ þ

1

2R
CmImðk2;RRÞ ¼ 0: ðA:10Þ

Moreover, we have

1

2R
Imðk2;RRÞ þ k2;R I 0mðk2;RRÞ



þ Imðk2;RRÞ

�
> 0; m 2 N: ðA:11Þ

Therefore, we deduce that

Cm ¼ �CðR; mÞBm; ðA:12Þ

where CðR; mÞ is given by Eq. (A.6).

Step 4. We apply now the transmission conditions to the field euuR given by Eq. (A.8) and deduce that

AmJmðk1;RÞ ¼ BmðKmðk2;RÞ � CðR; mÞImðk2;RÞÞ ðA:13Þ

and

Amk1;RJ 0
mðk1;RÞ ¼ Bmk2;R K 0

mðk2;RÞ
�

� CðR; mÞI 0mðk2;RÞ
�
: ðA:14Þ

Therefore, the dispersion equation DE is an immediate consequence of Eqs. (A.13) and (A.14). �

Remark A.1. We recall (see [11]) that the dispersion equation corresponding to BVP in the case of the

boundary condition associated with Eq. (9), is similar to DE with

CðR; mÞ ¼ K 0
mðk2;RRÞ þ Kmðk2;RRÞ
I 0mðk2;RRÞ þ Imðk2;RRÞ

; for Sommerfeld b:c: of order 1=2: ðA:15Þ

Since the dispersion equation corresponding to EVP is similar to DE with CðR; mÞ ¼ 0, one needs to analyze
the asymptotic behavior of CðR; mÞ when R tends to þ1. In order to do this, we note from now and on

CðR; mÞ ¼ C1ðR; mÞ when we refer to Eq. (A.6) and CðR; mÞ ¼ C1=2ðR; mÞ when we refer to Eq. (A.15). We

observe that the subscript stands for the order of the corresponding condition.

Lemma A.2. For m fixed, we have the following asymptotic behavior when R tends to infinity

C1ðR; mÞ � p
4m2 � 1

32k22;RR2
e�2k2;RR: ðA:16Þ



Normalized frequency V
0 105

0

0.5

Analytical values
Condition (9)    
Condition (10)   

Normalized frequency V
0 105

0

1

0.5

Analytical values
Condition (9)    
Condition (10)   

0 105
0

1

0.5

Analytical values
Condition (9)    
Condition (10)   

N
or

m
al

iz
ed

 p
ro

pa
ga

ti
on

 c
on

st
an

t 
b

N
or

m
al

iz
ed

 p
ro

pa
ga

ti
on

 c
on

st
an

t 
b

N
or

m
al

iz
ed

 p
ro

pa
ga

ti
on

 c
on

st
an

t 
b

(a)

(b)

(c)

Fig. 12. Comparison of the dispersion curves for three different values of R. (a) R ¼ 2, (b) R ¼ 4 and (c) R ¼ 10.
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Proof of Lemma A.2. Eqs. (9.7.2) and (9.7.4) in [1] imply that

k2;RK 0
mðk2;RRÞ þ k2;R

�
þ 1

2R

�
Kmðk2;RRÞ �

4m2 � 1

16k2;RR2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2k2;RR

r
e�k2;RR: ðA:17Þ

Similarly, Eqs. (9.7.1) and (9.7.3) in the same [1] give

k2;RI 0mðk2;RRÞ þ k2;R

�
þ 1

2R

�
Imðk2;RRÞ �

2k2;Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pk2;RR

p ek2;RR ðA:18Þ

Eq. (A.16) is therefore deduced from Eqs. (A.6), (A.17) and (A.18). �

Remark A.2. From the asymptotic behavior of C1ðR; mÞ given by Eq. (A.16), we deduce that the dispersion

equation DE converges to the exact solution as 1=R2. On the other hand, it has been shown in [11] that in

the case of condition (8) and (9), the convergence is as 1=R. Therefore, this result proves that condition (8)

and (10) has the potential for reducing the size of the computational domain XR.

A.1. Numerical illustrations

The objective here is to demonstrate numerically that the use of condition (8) and (10) requires a
computational domain XR smaller than the one needed for condition (8) and (9), for a prescribed accuracy.

For this purpose, we have computed, for different values of the radius R, which characterizes the size of the

computational domain, the dispersion curves of the first seven guided modes for both conditions (8) and (9)

and (8) and (10) and compared them to those obtained analytically [18]. This numerical investigation allows

to make the following two observations

• First, from the results reported in Fig. 12, we deduce that, for values of eVV far from the cut-off frequen-

cies, both conditions have a comparable performance for computing the propagation constants.

• Second, in the neighborhood of the cut-off frequencies, condition (8) and (10) delivers results with a bet-
ter accuracy than those obtained using condition (8) and (9), as it is clearly illustrated in Fig. 13 in the

case of the fundamental mode. Condition (8) and (9) requires a much larger computational domain to

reach the level of accuracy delivered by condition (8) and (10) as illustrated in Figs. 12(b) and (c).
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